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Abstract. In many auction settings we find a self-interested information broker, that
can potentially disambiguate the uncertainty associated with the common value of the
auctioned item (e.g., the true condition of an auctioned car, the sales forecast for a com-
pany offered for sale). This paper extends prior work, that has considered mostly the
information pricing question in this archetypal three-ply bidders-auctioneer-information
broker model, by enabling the information broker a richer strategic behavior in the form
of anonymously eliminating some of the uncertainty associated with the common value,
for free. The analysis of the augmented model enables illustrating two somehow non-
intuitive phenomena in such settings: (a) the information broker indeed may benefit from
disclosing for free some of the information she wishes to sell, even though this seem-
ingly reduces the uncertainty her service aims to disambiguate; and (b) the information
broker may benefit from publishing the free information to the general public rather than
just to the auctioneer, hence preventing the edge from the latter, even if she is the only
prospective customer of the service. While the extraction of the information broker’s op-
timal strategy is computationally hard, we propose two heuristics that rely on the variance
between the different values, as means for generating potential solutions that are highly
efficient. The importance of the results is primarily in providing information brokers with
a new paradigm for improving their expected profit in auction settings. The new paradigm
is also demonstrated to result, in some cases, in a greater social welfare, hence can be of
much interest to market designers as well.

1 Introduction
Information disclosure is a key strategic choice in auctions and as such vastly researched both
theoretically and empirically [8, 11]. One of the main questions in this context is the choice
of the auctioneer to disclose information related to the common value of the auctioned item
[10, 24, 12, 19, 20, 4]. For example, the board of a firm offered for sale can choose the extent to
which the firm’s client list or its sales forecast will be disclosed to prospective buyers. Various
other examples are given in the literature cited throughout this paper. The disclosed information
affects bidders’ valuation of the auctioned item and consequently the winner determination and
the auctioneer’s profit.

In many cases, the information is initially not available to the auctioneer herself, but rather
needs to be purchased by her from an external information broker. This is typically the case
whenever generating the information requires some specific expertise or special equipment
that the auctioneer does not possess. For example, in the firm selling case the information
may pertain to the financial stability of key clients of the firm, hence typically offered for sale
in the form of business analysts’ reports. The auctioneer thus needs to decide both whether
to purchase the information and whether to disclose it to bidders whenever purchased. The
problem further complicates when the information broker herself is acting strategically, e.g.,
setting the price of the information offered in a way that maximizes her profit.

Prior work that dealt with uncertain auction settings with a self-interested information bro-
ker [33] allowed the information broker to control only the pricing of the information offered



for sale. In this paper we extend the modeling of the information broker’s strategy, enabling
her also to disclose for free some of the information she holds. Specifically, we allow her to
publicly eliminate some of the possible outcomes, narrowing the set of possible values that the
common value may obtain. For example, prior to offering a firm the purchase of a market pre-
diction report, the analyst can publicly publish its preliminary version that eliminates some of
the possible outcomes. This behavior might seem intuitively non-beneficial, because now the
information service disambiguates between less values, hence seemingly “worth” less. Nev-
ertheless, our analysis of the augmented model enables demonstrating, numerically, that this
choice can be sometimes beneficial. A second somehow surprising choice that we manage to
illustrate is the one where the information broker finds it more beneficial to disclose the free
information to both the auctioneer and the bidders rather than to the auctioneer only. The latter
choice strengthens the auctioneer in the adversarial auctioneer-bidders interaction, allowing
her to make a better use of the information offered for sale, if purchased, hence potentially
enabling charging more for the service.

As explained in more details in the following paragraphs, the information brokers’ prob-
lem of deciding what information to disclose for free is computationally extensive. Therefore
another contribution of the paper is in presenting and demonstrating the effectiveness of two
heuristics for ordering the exponential number of solutions that need to be evaluated, such that
those associated with the highest profit will appear first in the ordering.

In the following section we provide a formal model presentation. Then, we present an
equilibrium analysis for the case where the free information is disclosed to both the auctioneer
and the bidders and illustrate the potential profit for the information broker from revealing
some information for free, as well as the ordering heuristics and their evaluation. Next, we
present the analysis of the case where the free information is disclosed only to the auctioneer.
Finally we conclude with review of related work and discussion of the main findings.

2 The Model
Our basic auction model considers an auctioneer offering a single item for sale to n bidders
using a second-price sealed-bid auction (with random winner selection in case of a tie). The
auctioned item is assumed to be characterized by some value X (the “common value”), which
is a priori unknown to both the auctioneer and the bidders [13, 14]. The only information
publicly available with regard to X is the set of possible values it can obtain, denoted X∗ =
{x1, ..., xk}, and the probability associated with each value, Pr(X = x) (

∑
x∈X∗ Pr(X =

x) = 1). Bidders are assumed to be heterogeneous in the sense that each is associated with a
type T that defines her valuation of the auctioned item (i.e., her “private value”) for any possible
value that X may obtain. We use the function Vt(x) to denote the private value of a bidder of
type T = t in case the true value of the item is X = x. It is assumed that the probability
function of types, denoted Pr(T = t), is publicly known, however a bidder’s specific type is
known only to herself.

The model assumes the auctioneer can obtain the value of X from an outer source, denoted
“information broker” (for the rest of the paper will be called ”broker”), by paying a fee C set
by the broker. Similar to prior models (e.g., [33]), and for the same justifications given there,
it is assumed that this option of purchasing the information is available only to the auctioneer,
though the bidders are aware of this possibility.

If purchasing the information, the auctioneer, based on the value obtained, can decide either
to disclose this information to the bidders or keep it to herself (hence disclosing ∅). If disclosing
the information, then it is assumed that the information received from the broker is disclosed
as is (i.e., truthfully and symmetrically to all bidders), e.g., in case the auctioneer is regulated
or has to consider her reputation. Finally, it is assumed that all players (auctioneer, bidders



and the broker) are self-interested, risk-neutral and fully rational agents, and acquainted with
the general setting parameters: the number of bidders in the auction, n, the cost of purchasing
the information, C, the discrete random variables X and T , their possible values and their
probability functions.

Up to this point our model resembles those found in prior literature. For example, it gener-
alizes the one found in [10, 24] in the sense that it requires the auctioneer to decide on purchas-
ing the external information rather than assuming she initially possesses it. It is also equivalent
to the one found in [33] where the broker is self-interested agent that controls C, the price of
purchasing the information. Our model, however, extends prior work in the sense that it allows
the broker also to anonymously publish some of the information for free before the auctioneer
makes her decision of whether to purchase the information. The anonymity requirement in this
case is important as discussed later on in the analysis section. Yet, there are numerous options
nowadays for publishing such information anonymously, e.g., through an anonymous email,
uploading the information to an electronic bulletin board or anonymous file server, sending the
information to a journalist or an analyst. The typical case, which we use for our analysis, is the
one where the broker, knowing the true value x ∈ X∗, eliminates a subset of values D ⊂ X∗

(where x /∈ D), leaving only the values X∗ −D as applicable values the common value may
obtain. Doing so, our model distinguishes between the case where the free information is dis-
closed to all and the one where it is disclosed to the auctioneer only (allowing the latter to
decide what parts of it to disclose further to the bidders prior to starting the auction).

3 Disclosing Information for Free
Consider the case where the true common value is x. In this case, if the broker publicly elim-
inates (i.e., anonymously publishes that the common value is not part of) the subset D ⊂ X∗

then the auctioneer and bidders are now facing the problem where the common value may
receive only the subset X∗ − D and the a priori probability of each value in the new setting
is given by Pr′(X = x) = Pr(X=x)∑

xi∈X∗−D Pr(X=xi)
. Since the auctioneer needs to decide both

whether to purchase the true value x ∈ X∗ −D and if so whether to disclose it to the bidders,
her (mixed) strategy can be characterized using Rauc = (pa, pa1 , ..., p

a
k) where pa is the prob-

ability she purchases the information from the broker and pai (1 ≤ i ≤ k) is the probability
she discloses to the bidders the value xi if indeed X = xi. The dominating bid of a bidder
of type t, when the auctioneer discloses that the true value is x, denoted B(t, x), is given by
B(t, x) = Vt(x) [36]. If no information is disclosed (x = ∅) then the dominating strategy
for each bidder is to bid her expected private value, based on her belief of whether information
was indeed purchased and if so, whether the value received is intentionally not disclosed by the
auctioneer [10]. The bidders’ strategy, denoted Rbidder, can thus be compactly represented as
Rbidder = (pb, pb1, ..., p

b
k), where pb is the probability they assign to information purchase by

the auctioneer and pbi is the probability they assign to the event that the information is indeed
disclosed if purchased by the auctioneer and turned to be xi.1

The bid placed by a bidder of type t in case the auctioneer does not disclose any value,
B(t, ∅), is therefore:

B(t, ∅) =
∑
x

Vt(x) · Pr∗(X = x) (1)

where Pr∗(X = x) is the posterior probability of xi being the true common value, based on
the bidders’ belief Rbidder and is being calculated as:

1 Being rational, all bidders hold the same belief in equilibrium.



Pr∗(X = xi) =
Pr(X = xi)(p

b(1− pbi ) + (1− pb))

(1− pb) + pb
∑

(1− pbi )Pr(X = xi)
(2)

The term in the numerator is the probability that xi indeed will be the true value and will
not be disclosed. If indeed xi is the true value (i.e., with a probability of Pr(X = xi)) then
it will not be disclosed either if the information is not purchased (i.e., with a probability of
(1 − pb)) or if purchased but not disclosed (i.e., with a probability of pb(1 − pbi )). The term
in the denominator is the overall probability that the information will not be disclosed. This
can happen either if the information will not be purchased (i.e., with a probability of (1− pb))
or when the information will be purchased however the value will not be disclosed (i.e., with
probability of pb

∑
(1− pbi )Pr(X = xi)).

Consequently, the auctioneer’s expected profit when using Rauc while the bidders use
Rbidder, denoted EB(Rauc, Rbidder), is given by:

EB(Rauc, Rbidder) = pa
∑

Pr′(X = xi)p
a
i · ERauc(xi)

+ ((1− pa) + pa
∑

(1− pai )Pr′(X = xi)) · ERauc(∅)− pa · C
(3)

where ERauc(xi) is the expected second highest bid if disclosing the true value xi (xi ∈
{X∗ −D, ∅}). The broker’s expected profit is pa · C. The first row of the equation deals with
the case where the auctioneer discloses the true value to the bidders (i.e., pa is the probability
that the information was purchased and

∑
Pr′(X = xi)p

a
i · ERauc(xi) is the probability that

xi is the true value multiplied by the auctioneer’s expected profit for this case). The second
row deals with the case where the information was not disclosed to the bidders (i.e., when
the information is not purchased by the auctioneer (with probability (1 − pa)) and when the
information is purchased but not discloses (with probability pa

∑
(1− pai )Pr′(X = xi) )).

A stable solution in this case (for the exact same proof given in [33]) is necessarily of
the form Rauc = Rbidder = R = (p, p1, ..., pk) (as otherwise, if Rauc = R′ 6= Rbidder,
the bidders necessarily have an incentive to deviate to Rbidder = R′), such that [33]: (a)
for any 0 < pi < 1 (or 0 < p < 1): ERauc(∅, R) = ERauc(Xi) (or ERauc(∅, Rbidder) =
ERauc((1, p1, ..., pk), R

bidder)); (b) for any pi = 0 (or p = 0): ERauc(∅, Rbidder) ≥ ERauc(Xi)
(or ERauc(∅, Rbidder) ≥ ERauc((1, p1, ..., pk), R

bidder); and (c) for any pi = 1 (or p = 1):
ERauc(∅, Rbidder) ≤ ERauc(Xi) (or ERauc(∅, Rbidder) ≤ ERauc((1, p1, ..., pk), R

bidder).
Therefore one needs to evaluate all the possible solutions of the form (p, p1, ..., pk) that may
hold (where each probability is either assigned 1, 0 or a value in-between). Each mixed solu-
tion of these 2·3k combinations (as only one solution where p = 0 is applicable) should be first
solved for the appropriate probabilities according to the above stability conditions. Since the
auctioneer is the first mover in this model (deciding on information purchase), the equilibrium
used is the stable solution for which the auctioneer’s expected profit is maximized.

If the information is provided for free (C = 0) then information is necessarily obtained
and the resulting equilibrium is equivalent to the one given in [10] for the pure equilibrium
case and [24] for the mixed equilibrium case.

Being able to extract the equilibrium for each price C she sets, the broker can now find
the price C which maximizes her expected profit. Repeating the process for all different sets
D ⊂ X∗, enables extracting the broker’s expected-profit maximizing strategy (D,C).

Figure 1 depicts the expected profit of the auctioneer (vertical axis) as a function of the in-
formation cost C (horizontal axis), for five of the possible D sets. The setting used is given in
the table at the bottom of the figure. It is based on four possible values the common value may
obtain: X∗ = {x1, x2, x3, x4}, where x3 is the true value. The subset D that is used for each



curve is marked next to it. For each set D the information provider discloses, the auctioneer
chooses whether to purchase the information and what values to disclose, if purchasing, ac-
cording to the auctioneer’s expected-profit-maximizing equilibrium. For example, the lowest
curve depicts the auctioneer’s expected profit when the broker initially eliminates the values
{x1, x4} and the auctioneer’s strategy is to disclose to the bidders the value x2 in case it is
the true value of the auctioned item. Since equilibria in this example are all based on pure
strategies, the expected-profit-maximizing price C, and hence the expected profit, equals the
highest price at which information is still purchased (marked by circles in the graph, as in this
specific example the last segment of each curve applies to an equilibrium by which the infor-
mation is not being purchased at all). From the figure we see that indeed in this sample setting,
anonymously eliminating some of the applicable values is highly beneficial - for example, the
elimination of x1 results in a profit of 3.7, compared to a profit of 1.2 in the case no information
is being a priori eliminated (i.e., D = ∅).

Fig. 1. Auctioneer’s expected profit as function of information purchasing cost, for different a priori
eliminated subsets.

As discussed in the introduction, benefiting from providing some of the information for
free may seem non-intuitive at first—seemingly the broker is giving away some of her ability
to disambiguate the auctioneer’s and bidders’ uncertainty. Yet, since the choice of whether the
information is purchased or not at any specific price derives from equilibrium considerations,
rather than merely the auctioneer’s preference, it is possible that providing information for free
becomes a preferable choice for the broker.



The benefit in free information disclosure does not necessarily come at the expense of
social welfare. For exemplifying this we introduce Figure 2. The setting used for this example

Fig. 2. An example of an improvement both in the broker’s expected profit and the the social welfare as a
result of free information disclosure. The true common value of the auctioned item in this example is x3.

is given in the bottom right side of the figure. Again, the auctioneer’s strategy is to disclose the
set which will benefit her the most. In this example the broker’s expected profit increases from
0 to 1 by publicly eliminating the value x1 (the information is not purchased otherwise), and
at the same time the social welfare (sum of the bidders’ and auctioneer’s profit) increases from
45 to 45.2, due to the substantial increase in the bidder’s profit (from 4.2 to 13.1). If including
the broker’s expected profit in the social welfare calculation, the increase is even greater.

Finally, we note the importance of disclosing the information anonymously or without
leaving a trace of a strategic behavior from the broker’s side. If the auctioneer and bidders
suspect that the broker may disclose free information strategically, then the equilibrium analy-
sis should be extended to accommodate the probabilistic update resulting from their reasoning
of the broker’s strategy. This latter analysis is left beyond the scope of the current paper—as
discussed in the previous section there are various ways nowadays for anonymous disclosure
of information, justifying this specific modeling choice.

4 Sequencing Heuristics
The extraction of the broker’s expected-profit-maximizing subset D is computationally ex-
hausting due to the exponential number of subsets for which equilibria need to be calculated
— the broker needs to iterate over all possible 2|X

∗|−1−1D subsets (as there are |X∗|−1 val-
ues that can be eliminated, and eliminating all but the true value necessarily unfolds the latter
as the true one). Therefore, in this section we present two efficient heuristics—Variance-based
(V b) and Second-Price-Variance-based (SPV b)—that enable the broker to predict with much
success what subsets D are likely to result, if eliminated for free, with close to optimal ex-
pected profit. The heuristics can be considered sequencing heuristics, as they aim to determine



the order according to which the different subsets should be evaluated. The idea is to evaluate
early in the process those subsets that are likely to be associated with the greatest expected
profit. This way a highly favorable solution will be obtained regardless of how many subsets
can be evaluated in total.

Variance-based (V b) The value of the information supplied by the broker derives from the
different players’ (auctioneer and bidders) ability to distinguish the true common value from
others, i.e., to better identify the worth of the auctioned item to different bidders. Therefore
this heuristic relies on the variance between the possible private values that the information
purchased will disambiguate as the primary indicator for its worth. Specifically, if the broker
a priori eliminates the subset D, we first update the probabilities of the remaining applicable
values, i.e., Pr∗(x ∈ X∗ −D) = Pr(X=x)∑

y∈X∗−D Pr(X=y) . The revised probabilities are then used

for calculating the variance of the private values in the bidder’s type level, denoted V ar(T =
t): V ar(T = t) =

∑
x∈X∗−D Pr∗(x)(Vt(x)−B(t, ∅))2, where Vt(x) is the private value

of a bidder of type T = t if knowing that the true common value is x, as defined in the
model section, and B(t, ∅) is calculated according to (1), based on a setting X∗ − D. The
overall weighted variance is calculated as the weighted sum of the variance in the bidder’s type
level, using the type probabilities as weights, i.e.,

∑
t∈T Pr(T = t) · V ar(T = t). The order

according to which the different subsets D ⊂ X∗ should be evaluated is thus based on the
overall weighted variance, descending.

Fig. 3. Performance (ratio between achieved expected profit and maximal expected profit): (a) V b and
SPV b versus random ordering; and (b) all three methods as a function of running time. All data points
are the average over 2500 random settings with 6 possible values the common value obtains.

Figure 3(a) illustrates the performance of V b (middle curve) as a function of the num-
ber of evaluated free disclosed subsets (horizontal axis). Since the settings that were used for
producing the graph highly varied, as detailed below, we had to use a normalized measure
of performance. Therefore we used the ratio between the broker’s expected profit if follow-
ing the sequence generated by the heuristic and the expected profit achieved with the profit-
maximizing subset (i.e., how close we manage to get to the result of brute force) as the primary
performance measure in our evaluation. The graph depicts also the performance of random or-
dering as a baseline. The set of problems used for this graph contains 2500 randomly generated
settings where the common value may obtain six possible values, each assigned with a random
probability, normalized such that all probabilities sum to 1. Similarly, the number of bidders
and the number of bidder types in each setting were randomly set within the ranges (2-10) and



(2-6), respectively. Finally, the probability assigned to each bidder type was generated in the
same manner as with the common value probabilities. For each setting we randomly picked
one of the values the common value may obtain, according to the common-value probability
function. Each data point in the figure thus represents the average performance over the 2500
randomly generated settings.

As can be seen from the graph, V b dominates the random sequencing in the sense that it
produces substantially better results for any number of subsets being evaluated. In particular,
the improvement in performance with the heuristic is most notable for relatively small number
of evaluated solutions, which is the primary desirable property for such a sequencing method,
as the goal is to identify highly favorable solutions within a limited number of evaluations. As
expected, the performance of both V b and random ordering monotonically increase, converg-
ing to 1 (and necessarily reaching 1 once all possible solutions have been evaluated). This is
because as the number of evaluated subsets increases the process becomes closer to brute force

Second-Price-Variance-based (SPV b) This heuristic is similar to V b in the sense that it orders
the different subsets according to their weighted variance, descending. It differ from V b in the
sense that instead of depending on the variance in bidders’ private values it uses the variance in
the worth of information to the auctioneer, i.e., in the expected second price bids. The variance
of the expected second price bids if disclosing D for free, denoted V ar(D), is calculated as:
V ar(D) =

∑
x∈X∗−D Pr∗(x)(ERauc(x)− ERauc(∅|D))2, where Pr∗(x) is calculated as

in V b, ERauc(x) is the expected second highest bid if disclosing to the bidders that the true
value is x, as given in the former section. ERauc(∅|D) is the expected second highest bid if the
auctioneer discloses no information to the bidders however the bidders are aware of the elimi-
nation of the subset D by the broker, i.e., bid according to B(t, ∅) =

∑
x∈X∗−D Vt(x)Pr(X =

x)/
∑

x∈X∗−D Pr(X = x).

Figure 3(a) also illustrates the performance of SPV b (upper curve) as a function of the
number of evaluated subsets D using a similar evaluation methodology and the same 2500 set-
tings that were used for evaluating V b, as described above. As can be seen from the graph,
SPV b dominates random sequencing and produces a substantial improvement, especially
when the number of evaluated subsets is small. In fact, comparing the two upper curves in
Figure 3(a) we observe that SPV b dominates V b in terms of performance as a function of the
number of evaluated sets. One impressive finding related to SPV b is that even if choosing the
first subset in the sequence it produces a relatively high performance can be obtained—91%
of the maximum possible expected profit, on average. This means that even without evaluating
any of the subsets (e.g., in case the broker is incapable of carrying the equilibrium analysis)
but merely by extracting the sets ordering, the broker can come up with a relatively effective
subset of values to disclose for free.

This dominance of SPV b is explained by the fact that it relies on the variance between the
winning bids rather than the bidders’ private values. Meaning it relates to the true worth of the
information to the auctioneer and consequently to the broker’s profit. While this is SPV b’s
main advantage, compared to V b, it is also its main weakness: from the computational aspect,
the time required for calculating the expected second-price variance of all applicable subsets
D is substantially greater than the time required for V b to calculate the variance between the
possible private values. The expected profit of the auctioneer when disclosing the information
X = x, denoted ERauc(X = x), equals the expected second-best bid when the bidders are
given x, formally calculated as:



ERauc(X = x) =
∑

w∈{B(t,x)|t∈T}

w(

n−1∑
k=1

n

(
n− 1

k

)
∑

B(t,x)>w

Pr(T = t)(
∑

B(t,x)=w

Pr(T = t))k(
∑

B(t,x)<w

Pr(T = t))n−k−1

+

n∑
k=2

(
n

k

)
(
∑

B(t,x)=w

Pr(T = t))k(
∑

B(t,x)<w

Pr(T = t))n−k)

(4)

The calculation iterates over all of the possible second-best bid values, assigning for each
its probability of being the second-best bid. As we consider discrete probability functions, it is
possible to have two bidders placing the same highest bid (in which case it is also the second-
best bid). For any given bid value, w, we therefore consider the probability of having either:
(i) one bidder bidding more than w, k ∈ 1, ..., (n− 1) bidders bidding exactly w and all of the
other bidders bidding less than w; or (ii) k ∈ 2, ..., n bidders bidding exactly w and all of the
others bidding less than w. Notice that (4) also holds for the case where x = ∅ (in which case
bidders use B(t, ∅) according to (1)).

The mentioned calculation results in a combinatorial (in the number of values the common
value may obtain) run time. The SPV b method thus requires more time to run for producing
the sequence according to which sets need to be evaluated, however the ordering it produces
is substantially better than the one produced by V b. Similarly, random sequencing does not
require any “setup” time and the different subsets can be evaluated right away.

In order to weigh in this effect in the heuristics’ evaluation we present Figure 3(b). Here,
the performance is depicted as a function of the actual run-time (in seconds, over the horizontal
axis) rather than the number of subsets evaluated once the ordering is completed.2 Here, we can
see the tradeoff between the initial calculation required for the ordering itself and the improve-
ment achieved within the first few evaluated subsets. The shift of each curve over the horizontal
axis, till its first data point, is the time it took to generate the sequence of subsets. From the
graph we see that if the amount of time allowed for running is relatively small then one should
choose to use a random sequence for evaluation. If the broker is less time-constrained, the best
choice is to use V b and then evaluate subsets according to the generated sequence. We notice
that the same typical behavior was observed for the case of five and seven possible values that
the common value may obtain. Evaluating for settings with more than six values is impracti-
cal, as it requires solving for thousands of such settings each, as seen from the Table 1, takes
substantial time to solve.

Table 1 depicts the average time it took to extract the equilibrium solution for a setting
according to the number of values in X∗. Each data point is the average for the 2500 problems
described above. This justifies our use of six values settings in the numerical evaluation, and
generally motivates the need for the sequencing heuristics we provide by showing that evalu-
ating all possible sets is in many cases impractical — indeed in many cases the total number
of values in X∗ is moderate,3 however, even with 8 values it takes more than 10 minutes to
extract the broker’s equilibrium profit for a single instance.

2 Our evaluation framework was built in Matlab R2011b and run on top of Windows7 on a PC with
Intel(R) Xeon(R) CPU E5620 (2 processors) with 24.0 GB RAM.

3 For example, in oil drilling surveys, geologists usually specify 3-4 possible ranges for the amount
of oil or gas that is likely to be found in a given area. Similarly, when requesting an estimate of the
amount of traffic next to an advertising space, the answer would usually be in the form of ranges rather
than exact numbers.



# of Possible Values 3 4 5 6 7 8
Execution Time (seconds) 0.16 0.58 3.57 20.07 103.19 708.46
Table 1. Average time in seconds for extracting the broker’s equilibrium profit in a single setting as a
function of |X∗|.

5 The Influence of Bidders’ Awareness
Next we consider the case where instead of revealing the information for free to all, only
the auctioneer receives it (e.g., using anonymous email). In this case the auctioneer needs to
decide whether to reveal this information (or part of it) to the bidders. This complicates a bit
the structure of the game: (a) First, the broker needs to decide on the set D of values to be
eliminated for free and the price C of her service of disambiguating the remaining uncertainty;
(b) then, she needs to transfer D anonymously to the auctioneer; (c) next, the auctioneer needs
to decide what part D′ ⊆ D to further disclose to the bidders; (d) then, the auctioneer needs to
decide whether to purchase the true value from the broker, and if purchasing, upon receiving
the value, whether to disclose it to the bidders or leave them uncertain concerning the true
value; (e) finally, the bidders need to bid for the auctioned item.

The analysis of this case relies heavily on the analysis given in the former sections. The
resulting adversarial setting if using D and D′ is one where bidders bid Vt(x) whenever the in-
formation is purchased and disclosed by the auctioneer, and otherwise B(t, ∅) according to (1),
except that this time the probabilities Pr∗(X = xi) used by bidders result from the equilibrium
of a setting where the original values are X∗ −D′. Therefore, upon receiving the information
D from the anonymous source, the auctioneer needs to calculate her expected profit from dis-
closing any subset D′ ⊆ D and choose the one that maximizes it. The auctioneer’s expected
profit calculation in this case is, however, a bit different, due to the asymmetry in information.
When initially disclosing D′ to bidders, the auctioneer needs to calculate the expected second
best bid from disclosing any value x ∈ X∗ − D, based on the bidders’ type distribution and
their bidding strategy as given above. The auctioneer should choose to disclose any value x for
which the expected second best bid if disclosed is greater than the expected second best bid
when no information is disclosed (i.e., when bidders bid B(t, ∅) according to the equilibrium
for the X∗ −D′ instance of the original problem, as explained above). This allows the broker
deciding what subset D to disclose, such that her expected profit is maximized.

Figure 4 is an example of a case where the information broker discloses the free informa-
tion only to the auctioneer and it is to the auctioneer’s choice which parts of the information
(if at all) to disclose to the bidders prior to the start of the auction. It relies on a setting of three
bidders, two possible types and four different values the common value may obtain (x1, ..., x4),
out of which x4 is the true common value. The full setting details are given in the table in the
right hand side of the figure. The leaf nodes provide the expected profit of the auctioneer (inside
the rectangle) and the broker (below the rectangle) for each combination of selections made
by these two players (the subset D disclosed for free and the subset D′ ⊆ D disclosed to the
bidders), according to the resulting equilibrium as analyzed above. The yellow colored leafs
are therefore those corresponding to the auctioneer’s best response given the subset D picked
by the broker, hence the expected-profit maximizing strategy for the broker is to anonymously
disclose to the auctioneer the subset {x2, x3} as in this case the auctioneer will choose not to
disclose any of these two values to the bidders, resulting in expected profit of 0.9 (compared



to 0.8,0.6,0.6,0.8,0.4 and 0.4 if eliminating {∅}, {x1}, {x2}, {x3}, {x1, x2} and {x1, x3}, re-
spectively).

Fig. 4. Disclosing the free information to the auctioneer only: the broker needs to decide on the subset D
to eliminate and then the auctioneer needs to decide on the subset D′ ⊂ D to disclose to bidders.

Interestingly, if the broker chooses to anonymously disclose to both the auctioneer and the
bidders that x2 and x3 can be eliminated, her expected profit, calculated based on the analysis
given in former sections, is 1.4. This is substantially greater than in the case where the bidders
are unaware of the information that was disclosed for free. Furthermore, eliminating x2 and
x3 for free is not necessarily the broker’s expected-profit-maximizing strategy for the scenario
where the free information reaches both the auctioneer and bidders. It is possible that there
is another subset which elimination results in an even greater improvement in profit when
compared to disclosing the elimination of x2 and x3 to the auctioneer only. This outcome, as
discussed in the introduction is quite non-intuitive because by eliminating the asymmetry in
the information disclosed to the different players the broker seemingly reduces the auctioneer’s
power against the bidders in this adversarial setting. Indeed, when the choice is given to the
auctioneer she would rather not disclose this information to the bidders and increase her profit.
Since the auctioneer is the potential purchaser of the broker’s service information offered by the
broker, it might seem that by disclosing the free information only to her, she will have a greater
flexibility in making use of the remaining information (that is offered for sale) hence will
see a greater value in purchasing it. Yet, the improvement in the auctioneer’s competence by
disclosing the free information to her only does not translate to an improvement in the broker’s
profit—eventually the broker’s profit depends on the range of prices and the corresponding
probabilities at which her information is indeed purchased. These latter factors result from the
equilibria considerations, leading to behaviors such as in the example above.

Even for this case, the sequencing heuristics V b and SPV b are of much importance. Figure
5 presents the performance evaluation for these two heuristics, for settings with six values,
demonstrating that highly efficient solutions can be extracted even with a small number of
evaluations.

6 Related Work
Over the years auctions have focused much interest in research, mostly due to their advan-
tage in effectively extracting bidders’ valuations and the guarantee of many auction protocols



Fig. 5. Performance (ratio between achieved expected profit and maximal expected profit) when the in-
formation is disclosed for free only to the auctioneer and she chooses which information to disclose to
the bidders : (a) V b versus random ordering as a function of number of evaluated subsets; (b) SPV b
versus random ordering as a function of number of evaluated subsets. All data points are the average of
2500 random settings with 6 possible values the common value obtains.

to result in efficient allocation [21, 18, 7, 5, 35, 34]. The case where there is some uncertainty
associated with the value of the auctioned item is quite common in auctions literature. Most
commonly it is assumed that the value of the auctioned item is unknown to the bidders at the
time of the auction and bidders may only have an estimate or some privately known signal, such
as an expert’s estimate, that is correlated with the true value [14, 22]. Many of the works using
uncertain common value models assumed asymmetry in the knowledge available to the bidders
and the auctioneer regarding the auctioned item, typically having sellers more informative than
bidders [1, 10]. As such, much recent emphasis was placed on the role of information revela-
tion [8, 11, 12, 19]. In particular, several works have considered the computational aspects of
such models where the auctioneer needs to decide on the subsets of non-distinguishable values
to be disclosed to the bidders [10, 24, 9]. Still, all these works assume the auctioneer neces-
sarily obtains the information and that the division into non-distinguishable groups, whenever
applicable, is always given to the bidders a priori. Our problem, on the other hand, does not re-
quire that the auctioneer possesses (or purchases) the information in the first place, and allows
not disclosing any value even if the information is purchased. Recent work that does consider
an auction setting with a strategic broker, and in fact provides the underlying three-ply equi-
librium analysis for this case [33, 3], limits the strategic behavior of the broker to price-setting
only. In this paper we extend that work to include an additional strategic dimension for the
broker, in the sense of anonymously disclosing some of the information for free. Furthermore,
unlike this prior work, in this paper we deal with the computational aspects of extracting the
broker’s strategy.

Models where agents can disambiguate the uncertainty associated with the opportunities
they consider exploiting through the purchase of information have been studied in several
other multi-agent domains, e.g., in optimal stopping domains [38, 29, 27, 30, 28]. Here, the
main questions studied were how much costly information it makes sense to acquire before
making a decision [25, 31], in particular when additional attributes can be revealed at certain
costs along the search path [23, 37]. Relaxation of the perfect signals assumption has also been
explored in models of economic search [6, 2]. Alas, mediators in such models usually take the
form of matchmakers rather than information brokers. Those that do consider a self-interested
information broker in these domains, e.g., Nahum et al.[26], focused on the way it should set
the price for the information it provides and did not consider the option of free information
disclosure.



Other related work can be found in the study of platforms that bring together different
sides of the market (e.g., dating, or eCommerce platforms). Here, there is much work on the
impact on selective information disclosure [15], strategic ordering of the disclosed information
[16] and having the platform charging only one of the two participating sides [17] and even
cases where consumers are in effect paid to use the platform were studied [32]. Our work can
be viewed in a similar vein, especially in the context of the information broker subsidizing
information provisioning, although the intuitions behind our results are quite different and
grounded in the transition between different equilibria rather than in the profit of potentially
increasing participation overall.

7 Conclusions and Future Work
Information brokers have become an integral part of many multi-agent systems. These range
from individuals with specific expertise, offering their services for a fee (e.g., analysts), to
large information services, such as Carfax.com or credit report companies. The model and
analysis given in the paper adds an important strategic dimension to prior work in the form
of influencing the auctioneer’s and bidders’ strategic interaction through the anonymous rev-
elation of some of the information that is offered for sale. As discussed throughout the paper,
this behavior may seem a bit unnatural. We show, however, that this strategy can actually be
highly beneficial to the broker. In fact, as demonstrated in the paper, it can even lead to an
overall improvement in the social welfare. Furthermore, if given the option to disclose the free
information to both the bidders and the auctioneer or to the auctioneer only, the broker may
benefit from choosing the first, despite the fact that the auctioneer is the one to decide about
purchasing the information.

The paper presents two sequencing heuristics aiming to reduce the computation time of the
broker’s expected-profit maximizing strategy. The results of an extensive evaluation of these
are quite encouraging - the generated sequences, with both heuristics, are quite effective, as
the very few initial subsets placed first in the sequence offer expected profit very close to the
expected-profit-maximizing one. Both methods use the variance as a measure for the profit in
disclosing a given set, differing in the values based on which the variance is calculated—the
bidder’s private valuations and the expected second price bids. Interestingly, we find that while
the use of the expected second-price produces a substantially more efficient sequence, it is
better to rely on the raw values (i.e., bidders’ valuations) as the execution time of generating
the sequence using the latter method is substantially shorter, leading to better performance
overall.

We note that, much like prior work, our model makes several assumptions that can be
relaxed in future research. For example, one can think of settings where the information is pro-
vided to the bidders not just based on the auctioneer’s decision to disclose it. Here, numerous
variations can be considered. For example, the bidders can purchase the information, whether
symmetrically or asymmetrically, either directly from the broker or indirectly from the auction-
eer. These of course require extending the analysis to include all the different dynamics that
will be formed. Another natural extension of our model would be one where the auctioneer and
the bidders are aware to the fact that the broker is the one that disclosed the information for
free (i.e., the free disclosure is not anonymous anymore) as discussed in the analysis section.
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